但它在向心爆聚那一瞬间产生的超高温超高密状态却是目前的磁约束聚变路线所无法比拟的。
就比如早在上个世纪的米国NIF国家点火装置实验中,内爆过程产生的温度峰值比太阳核心温度高出数十倍,达到了数亿摄氏度。
事实上,这项技术产生的等离子体温度和压力主要用于模拟恒星或核爆炸环境,能够为威力更大的氢弹研究提供不少的技术指导。
当然,如果简单的来说,你可以直接将惯性约束看成一枚极小当量的氢弹爆炸。
尽管持续的时间极短,但它带来的超高温与热量却足以在那狭小的空间内使得内部的硅元素产生燃烧聚变反应,进而诞生极其微弱的引力效应。
很显然,相对比大型强粒子对撞机来说,通过超短脉冲激光实现惯性约束聚变技术更合适这一次的超光速验证实验。
唯一的麻烦就是制造量子引力模拟激发设备需要用到不同国家的技术了。
比如米国的超短脉冲激光技术,日耳曼国的超光滑镜面,华国的小型可控核聚变反应堆等等。
只有将这些东西组合到一起,才能制造出来一台完整的量子引力模拟激发设备。
办公室中,CRHPC机构这边的助理是一位叫做沈雅云的年轻女士,年龄今年也才25岁,但工作能力却很是优秀。
内容未完,下一页继续阅读